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Abstract
The A

(1)
n−1-face model with boundary reflection is considered on the basis

of the boundary corner transfer matrix bootstrap. We construct the fused
boundary Boltzmann weights to determine the normalization factor. We
derive difference equations of the quantum Knizhnik–Zamolodchikov type for
correlation functions of the boundary model. The simplest difference equations
are solved in the case of the free boundary condition.

PACS numbers: 05.50.+q, 02.30.-f

1. Introduction

Many two-dimensional integrable models without boundaries have been solved by using the
representation theory of affine quantum groups [1, 2]. The integrability of bulk models is
ensured by the factorized scattering condition or the Yang–Baxter equation, in addition to the
unitarity and crossing symmetry condition [3, 4].

Cherednik [5, 6] showed that the integrability in the presence of a reflecting boundary
is ensured by the reflection equation (boundary Yang–Baxter equation) and the Yang–Baxter
equation for bulk theory. A systematic treatment for determining the spectrum of integrable
models with boundary reflection was initiated by Sklyanin [7] in the framework of the algebraic
Bethe ansatz. The boundary interaction is specified by the boundary S-matrix for massive
quantum theories [8], by the reflection matrix for lattice vertex models [7], and by the boundary
weights for lattice face models [9, 10].

In our previous paper [11] Belavin’s Zn-symmetric elliptic vertex model with boundary
reflection is considered on the basis of the boundary CTM (corner transfer matrix) bootstrap
formulated in [12]. We derived a set of difference equations, called the boundary quantum
Knizhnik–Zamolodchikov equations, for correlation functions in the boundary Belavin model.
Furthermore, we obtained the boundary spontaneous polarization by solving the simplest
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difference equations. The resulting quantities are exactly equal to the square of that for bulk
spontaneous polarization [13], up to a phase factor.

In this paper we consider the A(1)
n−1-face model [14] with a boundary on the basis of a

boundary CTM bootstrap. The Zn-symmetric model and the A(1)
n−1-face model are related by

the vertex-face correspondence [14] in bulk theory. Thus we wish to find the similar structure
in the boundary A(1)

n−1-face model as that observed in [11].
Integrable face models on a half infinite lattice have been studied in [15–18]. In [15] the

transfer matrix of the boundary ABF model (the boundary A(1)
1 -face model) was diagonalized

by constructing the boundary vacuum states, using the ansatz [19] that the boundary vacuum
states should be obtained from the Fock vacuum states by applying the exponential of the
infinite sum of the quadratic bosonic oscillators associated with the bulk ABF models [20].
In [16] the solution to the reflection equation was given for the boundary A(1)

n−1-face model.
In [17] free energy and critical exponents were obtained for n = 2, the boundary ABF model
case. In [18] correlation functions for the boundary XYZ model were obtained in terms of
those for the boundary ABF model [15] by using the vertex-face transformation method [21].

It was shown in [8] that the boundaryK-matrix can be determined, up to a CDD factor, by
imposing the reflection equation (boundary Yang–Baxter equation), the boundary unitarity and
the boundary crossing symmetry. In [16] the boundary crossing symmetries were derived for
the boundary face models associated withA(1)

1 , B(1)
n , C(1)

n , D(1)
n andA(2)

n , but not for the model
associated with A(1)

n−1 (n > 2). In order to discuss the higher n cases we shall establish the

boundary crossing symmetry (3.20) for A(1)
n−1, without which the K-matrix cannot be exactly

determined. Our main goal in this paper is to derive difference equations (4.12) satisfied by
correlation functions.

The rest of this paper is organized as follows. In section 2 we review the boundary A(1)
n−1-

face model, thereby fixing our notation. In section 3 we introduce the fusion of theK-matrix to
determine the normalization factors of the K-matrix. We also establish the boundary crossing
symmetry. In section 4 we construct a lattice realization of the vertex operators on the basis
of the boundary CTM bootstrap approach. Furthermore, we derive difference equations for
correlation functions of the boundaryA(1)

n−1-face model. In section 5 we give some concluding
remarks. In appendix A we give the explicit expressions of fused Boltzmann weights of the
bulkA(1)

n−1-face model [22]. In appendix B we give a simple sketch of the proof of the reflection
equation.

2. Boundary A(1)
n−1-face model

The present section aims to formulate the problem, thereby fixing the notation.

2.1. Theta functions

Throughout this paper we fix the integers n and r such that r � n+2, and also fix the parameter
x such that 0 < x < 1. We will use the abbreviations

[z] = x(z2/r)−z�x2r (x2z) (2.1)

where the Jacobi theta function is given by

�q(ζ ) = (ζ ; q)∞(qζ−1; q)∞(q, q)∞ (2.2)

(ζ ; q1, . . . , qm) =
∏

i1,...,im�0

(1− ζqi11 · · · qimm ). (2.3)

For an additive parameter z, we often use the corresponding multiplicative parameter ζ = x2z.
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For later convenience we also introduce the following symbols:

rm(z) = ζ−[(r−1)/r][(n−m)/n] gm(ζ )

gm(ζ−1)
gm(ζ ) = {x

2n+2r−m−1ζ }{xm+1ζ }
{x2n−m+1ζ }{x2r+m−1ζ } (2.4)

where 1 � m � n− 1 and

{ζ } = (ζ ; x2n, x2r )∞. (2.5)

In particular the function r1(z) will appear in the expression for the Boltzmann weights of the
A
(1)
n−1-face model in regime III.

2.2. The weight lattice of A(1)
n−1

Let V = C
n and {εµ}0�µ�n−1 be the standard orthogonal basis with the inner product

〈εµ, εν〉 = δµν . The weight lattice of A(1)
n−1 is defined as follows:

P =
n−1⊕
µ=0

Zε̄µ (2.6)

where

ε̄µ = εµ − ε ε = 1

n

n−1∑
µ=0

εµ.

We denote the fundamental weights by ωµ (1 � µ � n− 1):

ωµ = ε̄0 + ε̄1 + · · · + ε̄µ−1.

Since ωn = 0, you can define ωµ for µ ∈ Z by setting ωµ+n = ωµ. For a ∈ P we set

aµν = āµ − āν āµ = 〈a + ρ, εµ〉 ρ =
n−1∑
µ=1

ωµ. (2.7)

We also set

P +
l =

{ n−1∑
µ=1

aµωµ

∣∣∣∣a1, . . . , an−1 ∈ Z�0,

n−1∑
µ=1

aµ � l

}
.

We may denote a ∈ P +
l by a =∑n−1

µ=1 a
µωµ +

(
l −∑n−1

µ=1 a
µ
)
ω0.

2.3. The A(1)
n−1-face model

The A(1)
n−1-face model is the one whose local state a is restricted such that a ∈ P +

r−n. An
ordered pair (a, b) ∈ P 2 is called admissible if b = a + ε̄µ, for a certain µ (0 � µ � n− 1).
In what follows we denote b←− a when (a, b) ∈ P 2 is admissible. Furthermore, an ordered
quartet (a, b, c, d) ∈ P 4 is called admissible if the four pairs (a, b), (a, d), (b, c) and (d, c)
are admissible.

For (a, b, c, d) ∈ P 4 let

W(a, b, c, d|z1 − z2) = W
(
c d

b a

∣∣∣∣ z1 − z2

)
=
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be the Boltzmann weight of theA(1)
n−1 model for the state configuration (a, b, c, d) round a face.

Here the four states a, b, c and d are ordered clockwise from the SE corner, and the oriented
broken lines in the above figure carry spectral parameters. In this model W(a, b, c, d|z) = 0
unless the quartet (a, b, c, d) is admissible. Non-zero Boltzmann weights are parametrized in
terms of the elliptic theta function of the spectral parameter z as follows:

W

(
a + 2ε̄µ a + ε̄µ
a + ε̄µ a

∣∣∣∣ z
)
= r1(z)

W

(
a + ε̄µ + ε̄ν a + ε̄µ
a + ε̄ν a

∣∣∣∣ z
)
= r1(z)

[z][aµν − 1]

[z + 1][aµν]
(µ �= ν)

W

(
a + ε̄µ + ε̄ν a + ε̄ν
a + ε̄ν a

∣∣∣∣ z
)
= r1(z)

[z + aµν][1]

[z + 1][aµν]
(µ �= ν)

(2.8)

where − n
2 < z < 0 in regime III.

The Boltzmann weights (2.8) solve the face-type Yang–Baxter equation [14]:∑
g

W

(
d e

c g

∣∣∣∣ z1

)
W

(
c g

b a

∣∣∣∣ z2

)
W

(
e f

g a

∣∣∣∣ z1 − z2

)

=
∑
g

W

(
g f

b a

∣∣∣∣ z1

)
W

(
d e

g f

∣∣∣∣ z2

)
W

(
d g

c b

∣∣∣∣ z1 − z2

)
. (2.9)

Some numerical calculations concerning the hard hexagon model in [4] suggest that the
CTM is well defined in the thermodynamic limit if the normalization factor r1(z) is chosen
such that the partition function per site is equal to unity. In order to fix r1(z) the following two
inversion relations are useful [14]:∑

g

W

(
c g

b a

∣∣∣∣− z
)
W

(
c d

g a

∣∣∣∣ z
)
= δbd (2.10)

∑
g

GgW

(
g b

d c

∣∣∣∣− n− z
)
W

(
g d

b a

∣∣∣∣ z
)
= δac GbGd

Ga

(2.11)

where

Ga =
∏

0�µ<ν�n−1

[aµν].

From the inversion trick based on these relations we get the expression of r1(z) in regime III.
The Boltzmann weights (2.8) also have σ -invariance [14]:

W

(
σ(c) σ (d)

σ (b) σ (a)

∣∣∣∣ z
)
= W

(
c d

b a

∣∣∣∣ z
)

(2.12)

where σ is the diagram automorphism of A(1)
n−1 defined by σ(ωµ) = ωµ+1.

2.4. Solution to the reflection equation

Let us consider the interaction at the boundary, which is specified by the boundary Boltzmann
weight or the K-matrix:

K(a, b, c|z) = K

(
a
b

c

∣∣∣∣ z
)
= .
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Here (b, a) and (c, a) are admissible. The integrability condition of the boundary face model
is the face-type reflection equation [9, 10]:∑
d,e

K

(
f
g

e

∣∣∣∣ z2

)
W

(
c f

d e

∣∣∣∣ z1 + z2

)
K

(
d
e

a

∣∣∣∣ z1

)
W

(
c d

b a

∣∣∣∣ z1 − z2

)

=
∑
d,e

W

(
c f

d g

∣∣∣∣ z1 − z2

)
K

(
d
g

e

∣∣∣∣ z1

)
W

(
c d

b e

∣∣∣∣ z1 + z2

)
K

(
b
e

a

∣∣∣∣ z2

)
.

(2.13)

For the bulk Boltzmann weights of the A(1)
n−1-face model [14] the diagonal solution to

equation (2.13) is given as follows [16]:

K

(
a + ε̄µ

a

a′

∣∣∣∣ z
)
= fa(z) [āµ + η + z]

[āµ + η − z]δaa′ (2.14)

where η = η(a) may depend on a but is a constant with respect to z. In the present
paper we take an a-independent constant η for simplicity. The authors of [15] employed
the diagonal K-matrix for the boundary ABF model (n = 2 case) with η(a) = k/2 + c for
a = (k − 1)ω1 + (r − 1− k)ω0. We also notice that the opposite admissible conditions, such
that (a, b) and (a, c) are admissible, were used in [16]. Thus we give a simple sketch of the
proof of the claim that (2.14) solves the reflection equation (2.13) in appendix B.

Let a ∈ P +
r−n be the local state. Then in regime III any ground state configuration

is labelled by some b ∈ P +
r−n−1, i.e. a configuration consisting of the cyclic sequence of

b, b + ω1, . . . , b + ωn−1 [14]. In the ‘low-temperature’ limit x → 0, one of these ground
states is realized. In what follows we fix one of them (say, labelled by b) and define all the
correlation functions in terms of the ‘low-temperature’ series expansion, the formal power
series with respect to x. Then the fixed ground state configuration gives the lowest order.
Furthermore, any finite order contribution results from the configurations which differ from
that of the fixed ground state by altering a finite number of local states. Thus the infinite
number of states at far enough sites should coincide with the fixed ground state configuration
labelled by b. Such one-to-one correspondence with the ground state configuration allows us
to specify the boundary conditions by the same index b ∈ P +

r−n−1.
When we fix the local state a ∈ P +

r−n at the right-most corner in the bulk case, there are
n possible ground state configurations labelled by b = a − ωi ∈ P +

r−n−1 (0 � i � n − 1).
In the presence of the boundary weight (2.14), the σ invariance (2.12) is broken and one of
b = a − ωi ∈ P +

r−n−1 is selected as the ground state configuration when we fix a ∈ P +
r−n

at the right-most corner. In order to determine which b = a − ωi labels the ground state
configuration, i.e. which K(a + ε̄i , a, a|z) takes the largest among the K(a + ε̄µ, a, a|z), let
us consider the boundary Boltzmann weights in the ‘low-temperature’ limit x → 0.

Here we assume that the constant η belongs to one of the following n disjoint intervals:(
− ā0 + ā1

2
,−ā1

)
,

(
− ā1 + ā2

2
,−ā2

)
, . . . ,

(
− ān−2 + ān−1

2
,−ān−1

)
,(

−ān−1,
r − ā0 − ān−1

2

)
.

Note that

ān−1 < · · · < ā1 < ā0 < r + ān−1 āµ−1 − āµ ∈ Z>0 (1 � µ � n− 1) (2.15)

for a ∈ P +
r−n [23]. We further restrict the spectral parameter z to satisfy

−n
2
< −ān−1 − η < z < 0 if − ān−1 < η <

r − ā0 − ān−1

2
(2.16)
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−n
2
< āi + η < z < 0 if − āi−1 + āi

2
< η < −āi (1 � i � n− 1). (2.17)

When −ān−1 < η <
r−ā0−ān−1

2 , by using (2.15) and (2.16) we have

āµ + η − z > āµ + η + z � ān−1 + η + z > 0 (0 � µ � n− 1)

r − āµ − η − z > r − āµ − η + z � r − ā0 − η + z > 0 (0 � µ � n− 1).

Thus the boundary Boltzmann weights behave like

fa(z)
−1K

(
a + ε̄µ

a

a′

∣∣∣∣ z
)
∼ ζ [2(āµ+η)/r]−1 (x → 0). (2.18)

We therefore find from (2.18) thatK(a+ε̄0, a, a|z) takes the largest for−ān−1 < η <
r−ā0−ān−1

2 .
When − āi−1+āi

2 < η < −āi (1 � i � n− 1), by using (2.15) and (2.17) we have

āµ + η − z > āµ + η + z � āi−1 + η + z > 0 (0 � µ � i − 1)

āµ + η + z < āµ + η − z � āi + η − z < 0 (i � µ � n− 1)

r − āµ − η − z > r − āµ − η + z � r − ā0 − η + z > 0 (0 � µ � n− 1).

Thus the boundary Boltzmann weights behave like

fa(z)
−1K

(
a + ε̄µ

a

a′

∣∣∣∣ z
)
∼
{
ζ [2(āµ+η)/r]−1 (0 � µ � i − 1)
ζ [2(āµ+η)/r]+1 (i � µ � n− 1)

(x → 0). (2.19)

We therefore find from (2.19) that K(a + ε̄i , a, a|z) takes the largest value for− āi−1+āi
2 < η <

−āi (1 � i � n− 1).
As is seen above, which K(a + ε̄i , a, a|z) takes the largest value depends on the value

of η. Suppose that we fix η such that K(a + ε̄i , a, a|z) takes the largest value among the
K(a + ε̄µ, a, a|z). Then the boundary condition can be labelled by

b = a − ωi (0 � i � n− 1). (2.20)

For fixed i in (2.20) we should rather rewrite (2.14) as the expression normalized by
K(a + ε̄i , a, a|z):

K(i)

(
a + ε̄µ

a

a′

∣∣∣∣ z
)
= f (i)a (z)

[āi + η − z]
[āi + η + z]

[āµ + η + z]

[āµ + η − z]δaa′ . (2.21)

3. Fusion of K-matrices

In order to determine the normalization factor f (i)a (z) let us introduce the fusion ofK-matrices.
The fusion hierarchy of the boundary ABF model (boundaryA(1)

1 -face model) was constructed
in [10], and the fusion procedure of the boundary vertex models was considered in [24, 25].

3.1. Bulk and boundary face operators

In this subsection we reformulate the bulk Boltzmann weight W and the boundary Boltzmann
weight K as elements of the bulk and boundary face operators. Let

/(b,a)
z =

{
Cv(b,a) if (a, b) ∈ P 2 is admissible

0 otherwise

/z =
⊕
a,b

/(b,a)
z .
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Then the W operator is defined as [23]

W/z1 ,/z2 (v(d,a) ⊗ v(c,d)) =
∑
b

v(c,b) ⊗ v(b,a)W
(
c d

b a

∣∣∣∣ z1 − z2

)
. (3.1)

Furthermore, if we introduce the K operator by

K(z) : /z → /−z

K(z)v(b,a) =
∑
a′
v(b,a

′)K

(
b
a

a′

∣∣∣∣ z
)

(3.2)

the reflection equation (2.13) can be regarded as the equality of linear operators:

K2(z2)W
/z2 ,/−z1
2 1 K1(z1)W

/z1 ,/z2
1 2 = W/−z2 ,/−z1

2 1 K1(z1)W
/z1 ,/−z2
1 2 K2(z2) (3.3)

where the subscripts to the W and K denote the spaces on which they nontrivially act. Then
both sides of (3.3) map /z1 ⊗/z2 to /−z1 ⊗/−z2 .

3.2. Fusion procedure of the W operator

For fixedm (2 � m � n) let zj = z+m+1
2 −j (1 � j � m), and for 0 � µ1 < · · · < µm � n−1

we denote

a0 = a aj = a + ε̄µ1 + · · · + ε̄µj (1 � j � m)

and

aσj = a + ε̄µσ(1) + · · · + ε̄µσ(j) (1 � j � m)

for σ ∈ Sm. Note that aσm = am. Let

∧m(/(am,a0)
z ) =

∑
σ∈Sm

(sgn σ)/
(aσ1 ,a0)
z1 ⊗/(aσ2 ,a

σ
1 )

z2 ⊗ · · · ⊗/(am,a
σ
m−1)

zm

∧m(/z) =
⊕
a0,am

∧m(/(am,a0)
z )

and let v(am,a) stand for the one-dimensional basis of∧m(/(am,a0)
z ). ThenW

/z2 ,/z1
2 1 is the fusion

operator associated with ∧2(/z), because Im (W
/z2 ,/z1
2 1 |/z1 ⊗/z2) = ∧2(/z). For generalm,

the fusion operators π(m)± associated with the ∧m(/±z) are given as follows [23]:

π(m)+ = W/zm ,/zm−1

mm−1 · · ·W/z3 ,/z2
3 2 W

/z3 ,/z1
3 1 W

/z2 ,/z1
2 1

π
(m)
− = W/−z1 ,/−z2

1 2 W
/−z1 ,/−z3
1 3 W

/−z2 ,/−z3
2 3 · · ·W/−zm−1 ,/−zm

m−1m .

The m-fold fused W operator as an intertwiner on /z1 ⊗∧m(/z2) should be defined as

W/z1 ,∧m(/z2 )(v(d,a) ⊗ v(dm,d)) =
∑
am

v(dm,am) ⊗ v(am,a)W(1,m)

(
dm d

am a

∣∣∣∣ z1 − z2

)
(3.4)

where theW(1,m) are the horizontalm-fold fused Boltzmann weights, anddm−d = ε̄λ1 +· · ·+ε̄λm
with 0 � λ1 < · · · < λm � n − 1. Another m-fold fused W operator as an intertwiner on
∧m(/z1)⊗/z2 should be defined as

W∧
m(/z1 ),/z2 (v(am,a) ⊗ v(bm,am)) =

∑
b

v(bm,b) ⊗ v(b,a)W(m,1)

(
bm am
b a

∣∣∣∣ z1 − z2

)
(3.5)

where theW(m,1) are the verticalm-fold fused Boltzmann weights, and bm−b = ε̄λ1 + · · ·+ ε̄λm
with 0 � λ1 < · · · < λm � n− 1. See [22] for the definitions of horizontal and vertical fused
Boltzmann weights. The results are also summarized in appendix A of this paper.
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Furthermore, we denote the dual space of /z by /∗z
∼= ∧n−1(/z). Let

/∗(b,a)z =
{

Cv∗(b,a) if (b, a) ∈ P 2 is admissible

0 otherwise

/∗z =
⊕
a,b

/(b,a)
z .

The dual W operators are defined as

W
/z1 ,/

∗
z2 (v(d,a) ⊗ v∗(c,d)) =

∑
b

v(c,b) ⊗ v∗(b,a)W/z1 ,/
∗
z2

(
c d

b a

)

W
/∗z1 ,/z2 (v∗(d,a) ⊗ v(c,d)) =

∑
b

v∗(c,b) ⊗ v(b,a)W/∗z1 ,/z2

(
c d

b a

)

W
/∗z1 ,/

∗
z2 (v∗(d,a) ⊗ v∗(c,d)) =

∑
b

v∗(c,b) ⊗ v∗(b,a)W/∗z1 ,/
∗
z2

(
c d

b a

)
.

(3.6)

The dual Boltzmann weights are graphically represented as follows:

W
/z1 ,/

∗
z2

(
c d

b a

)
=

W
/∗z1 ,/z2

(
c d

b a

)
=

W
/∗z1 ,/

∗
z2

(
c d

b a

)
=

Here, implies that (b, a) ∈ P 2 is admissible.

3.3. Fusion procedure of the K operator

Now we wish to construct the m-fold fusion of K-operator mapping ∧m(/z) to ∧m(/−z):
K(m)(z)v(am,a) =

∑
a′
v(am,a

′)K(m)

(
am

a

a′

∣∣∣∣ z
)
. (3.7)

Here we use the same notation zj , aj , aσj (1 � j � m) as in the previous subsection.
When m = 2 the fused K-matrix is defined as follows:

K(2)
+

(
a2
a

a′

∣∣∣∣ z
)
=
∑
σ∈S2

sgn σ
∑
a′′
K1

(
a1

a

a′′

∣∣∣∣ z1

)

×W12

(
a2 a1

aσ1 a′′

∣∣∣∣ z1 + z2

)
K2

(
aσ1
a′′

a′

∣∣∣∣ z2

)

= δaa′
∑
σ∈S2

sgn σ K1

(
a1
a

a

∣∣∣∣ z1

)
W12

(
a2 a1

aσ1 a

∣∣∣∣ z1 + z2

)
K2

(
aσ1
a

a

∣∣∣∣ z2

)
. (3.8)
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In the last equality we use the diagonal property of the K-matrix, i.e. K(a, b, c|z) = 0 unless
b �= c. The two-fold K-matrix is represented graphically as follows:

K(2)
+

(
a2
a

a′

∣∣∣∣ z
)
=
∑
σ∈S2

sgn σ .

For general m � 2 and σ ∈ Sm, let us introduce the symbols a(k,j) (0 � j � k � m) such
that

a(0,0) = a a(k,0) = ak (1 � k � m)

a(m,m) = a′ a(m,j) = aσm−j (1 � j � m− 1).

In this notation, the summation variable a′′ in (3.8) is denoted by a(1,1) with m = 2. Using
these symbols the m-fold fusion of K-matrices is defined as follows:

K(m)
+

(
am

a

a′

∣∣∣∣ z
)
=
∑
σ∈Sm

sgn σ
∑
{a(k,j)}

m∏
j=1

K

(
a(j,j−1) a

(j−1,j−1)

a(j,j)

∣∣∣∣ zj
)

×
m−1∏
j,k=1
j�k

W

(
a(k,j−1) a(k−1,j−1)

a(k,j) a(k−1,j)

∣∣∣∣ zj + zk

)
= δaa′K(m)

+

(
am

a

a

∣∣∣∣ z
)
. (3.9)

In the last equality we again use the diagonal property of the K-matrix. The m-fold K-matrix
is represented graphically as follows:

K(m)
+

(
am

a

a

∣∣∣∣ z
)
=
∑
σ∈Sm

sgn σ .

It is evident that the m-fold K-matrix can be constructed in an inductive manner:

K(m)
+

(
am

a

a

∣∣∣∣ z
)
=

∑
aσ1=a+ε̄µσ(1)

(−1)σ(1)−1 K(m−1)
+

(
am−1

a

a

∣∣∣∣ z + 1
2

)

×W(m−1,1)

(
a am−1

aσ1 a

∣∣∣∣ z + 1
2 + zm

)
K

(
aσ1
a

a

∣∣∣∣ zm
)

=
∑

aσm−1=am−ε̄µσ(m)
(−1)m−σ(m) K

(
a1
a

a

∣∣∣∣ z1

)

×W(1,m−1)

(
a a1

aσm−1 a

∣∣∣∣ z− 1
2 + z1

)
K(m−1)

+

(
aσm−1

a

a

∣∣∣∣ z− 1
2

)
. (3.10)

Here W(1,m−1) and W(m−1,1) are the horizontal and vertical fused Boltzmann weights,
respectively.

Successive application of the Yang–Baxter equation (2.9) and the reflection equation (2.13)
indicate the reflection equations involving K(m)

+ (z):

K2(z2)W
/z2 ,∧m(/−z1 )
21 K

(m)
+ 1 (z1)W

∧m(/z1 ),/z2
12

= W/−z2 ,∧m(/−z1 )
21 K

(m)
+ 1 (z1)W

∧m(/z1 ),/−z2
12 K2(z2)

K
(m)
+ 2 (z2)W

∧m(/z2 ),∧m(/−z1 )
21 K

(m)
+ 1 (z1)W

∧m(/z1 ),∧m(/z2 )

12

= W∧
m(/−z2 ),∧m(/−z1 )

21 K
(m)
+ 1 (z1)W

∧m(/z1 ),∧m(/−z2 )
12 K

(m)
+ 2 (z2).

(3.11)
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Both sides of the first of equations (3.11) map ∧m(/z1) ⊗ /z2 to ∧m(/−z1) ⊗ /−z2 , while
those of the second of equations (3.11) map ∧m(/z1)⊗∧m(/z2) to ∧m(/−z1)⊗∧m(/−z2).

Another fused K-matrix is defined in an inductive manner as follows. For m = 2 let

K
(2)
−

(
a2
a

a

∣∣∣∣ z
)
=
∑
σ∈S2

sgn σ K2

(
a1
a

a

∣∣∣∣ z2

)
W21

(
a2 a1

aσ1 a

∣∣∣∣ z1 + z2

)
K1

(
aσ1
a

a

∣∣∣∣ z1

)
(3.12)

and for m > 2 let

K
(m)
−

(
am

a

a

∣∣∣∣ z
)
=

∑
aσ1=a+ε̄µσ(1)

(−1)σ(1)−1 K(m−1)
+

(
am−1

a

a

∣∣∣∣ z− 1
2

)

×W(m−1,1)

(
a am−1

aσ1 a

∣∣∣∣ z− 1
2 + z1

)
K

(
aσ1
a

a

∣∣∣∣ z1

)

=
∑

aσm−1=am−ε̄µσ(m)
(−1)m−σ(m) K

(
a1
a

a

∣∣∣∣ zm
)

×W(1,m−1)

(
a a1

aσm−1 a

∣∣∣∣ z + 1
2 + zm

)
K(m−1)

+

(
aσm−1

a

a

∣∣∣∣ z + 1
2

)
. (3.13)

Two kinds of m-fold fused K-matrices are related as follows:

K(m)
+ (z)π(m)+ = π(m)− K

(m)
− (z). (3.14)

Note that (3.14) with m = 2 directly follows from the reflection equation (2.13), and also
that (3.14) with m > 2 follows from the Yang–Baxter equation (2.9) and the reflection
equation (2.13). The relation (3.14) implies that Im (K

(m)
+ (z)| ∧m (/z)) = ∧m(/−z), and

hence that K(m)
+ (z) can be regarded as a bona fide K-matrix mapping ∧m(/z) to ∧m(/−z)

satisfying (3.11).

3.4. Boundary crossing symmetry

By taking account of the recursion relation (3.10), the explicit expression of K(m)
+ (z) can be

obtained as follows:

K(m)
+

(
a +

m∑
j=1

ε̄µj
a

a

∣∣∣∣∣ z
)
= (−1)mC2

∏
j<k

r1(zj + zk)
m−1∏
j=1

[2z− j ]

[2z + j ]

×
m∏
j=1

f (i)a (zj )
[āi + η − zj ]

[āi + η + zj ]

[āµj + η + z1]

[āµj + η − zn]
. (3.15)

Note that the sign factor (−1)mC2 results from the permutation (1, . . . , m) �→ (m, . . . , 1). See
the graphical representation of K(m)

+ following equation (3.9).
Since∧n(/(a,a)

z ) ∼= C, the n-fold fusedK-matrix should be a scalar. By putting the scalar
equal to unity we obtain the normalization factor f (i)a (z) of the K-matrix in (2.21) as follows:

f (i)a (z) = ζ [(n−1)/n][(r−1)/r]−2āi /r
g(ζ )p(i)a (ζ )p

(i)
a (x

2ζ−1)

g(ζ−1)p
(i)
a (ζ−1)p

(i)
a (x2ζ )

(3.16)

where ζ = x2z, and

g(ζ ) = (x2n+2ζ 2; x4n, x2r )∞(x2(r+n−1)ζ 2; x4n, x2r )∞
(x2r ζ 2; x4n, x2r )∞(x4nζ 2; x4n, x2r )∞

p(i)a (ζ ) =
n−1∏
j=0

(x2(āi+η+j)ζ ; x2n, x2r )∞
(x2(r+n−j−1−āi−η)ζ ; x2n, x2r )∞

(x2(r−āj−η)ζ ; x2n, x2r )∞
(x2(āj+η+n−1)ζ ; x2n, x2r )∞

.
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Let us define the dual K operator and its matrix element as follows:

K∗(z)v∗(b,a) =
∑
a′
v∗(b,a

′)K∗
(
b
a

a′

∣∣∣∣ z
)
. (3.17)

When m = n− 1 we identify the dual K-matrix with the fused K-matrix as follows:

K∗
(
a − ε̄µ a

a′

∣∣∣∣ z
)
= K(n−1)

+

(
a +

n−1∑
ν=0
ν �=µ

ε̄ν
a

a′

∣∣∣∣z
)
. (3.18)

For later convenience we also introduce the K̂ operator:

K̂(z)v(b,a) =
∑
b′
v(b

′,a)K∗
(
a
b

b′

∣∣∣∣− z− n

2

)
. (3.19)

The boundary crossing symmetry can be obtained by substituting (3.18) into (3.10) with
m = n:

K∗
(
b
a

a′

∣∣∣∣ z
)
= δaa′

∑
d

Gd

Ga

W

(
d a

a b

∣∣∣∣ 2z

)
K

(
d
a

a

∣∣∣∣− n

2
− z

)
. (3.20)

The boundary crossing relations were found in [7, 25] for vertex-type models, and in [10, 16]
for face-type models. As for the A(1)

1 , B(1)
n , C(1)

n , D(1)
n and A(2)

n -face model cases, see [16].
This is the first to derive the boundary crossing relation for the boundary A(1)

n−1-face model
with n > 2. The vertex-type version of (3.20) is given by (4.12) in [11].

4. Correlation functions and difference equations

4.1. Vertex operators and commutation relations

For b = a − ωi (0 � i � n − 1), let Hl,k be the space of admissible paths (. . . , a2, a1, a0)

such that

a0 = a aj − aj−1 ∈ {ε̄0, ε̄1, . . . , ε̄n−1} for j = 1, 2, 3, . . .

aj = b + ωj+i for j � 1
(4.1)

where k = a + ρ, l = b + ρ.
Following [2,22] we can identify the type I vertex operators with the half transfer matrices.

Here we need four types of vertex operators:

= φ(a+ε̄µ,a)
b (z1 − z2) : Hl,k −→ Hl,k+ε̄µ

= φb(a−ε̄µ,a)(z2 − z1) : Hl,k −→ Hl,k−ε̄µ

= φ∗(a−ε̄µ,a)b (z1 − z2) : Hl,k −→ Hl,k−ε̄µ

= φ∗b(a+ε̄µ,a)(z2 − z1) : Hl,k −→ Hl,k+ε̄µ .
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In what follows we often suppress the letter b specifying the boundary condition.
It follows from the Yang–Baxter equation (2.9) and the boundary condition that these

vertex operators satisfy the following commutation relations:

φ(c,d)(z2)φ
(d,a)(z1) =

∑
d

W

(
c d

b a

∣∣∣∣ z1 − z2

)
φ(c,d)(z1)φ

(d,a)(z2)

φ∗(c,b)(z2)φ
(b,a)(z1) =

∑
d

W
/z1 ,/

∗
z2

(
c d

b a

)
φ(c,d)(z1)φ

∗(d,a)(z2)

φ(c,b)(z2)φ
∗(b,a)(z1) =

∑
d

W
/∗z1 ,/z2

(
c d

b a

)
φ∗(c,d)(z1)φ

(d,a)(z2)

φ∗(c,b)(z2)φ
∗(b,a)(z1) =

∑
d

W
/∗z1 ,/

∗
z2

(
c d

b a

)
φ∗(c,d)(z1)φ

∗(d,a)(z2).

(4.2)

HereW/z1 ,/
∗
z2 ,W/∗z1 ,/z2 andW/∗z1 ,/

∗
z2 denote the dualW operators. See appendix A concerning

their matrix elements.
Furtermore, the unitarity relations with respect to the W operators imply the inversion

relation of the vertex operators:
n−1∑
µ=0

φ(a,a+ε̄µ)(−z)φ(a+ε̄µ,a)(z) = 1. (4.3)

Thanks to the crossing symmetry with respect to the W operators (see appendix A) we also
have the duality identities:

φ∗(a−ε̄µ,a)(z) = G−1
a φ(a−ε̄µ,a)

(
−z− n

2

)
φ∗(a+ε̄µ,a)(z) = Gaφ

(a+ε̄µ,a)
(
−z− n

2

)
. (4.4)

Using the vertex operators introduced in the previous section, the transfer matrix for the
semi-infinite lattice is expressed as follows:

T
(i)
B (z) =

n−1∑
µ=0

φ(a,a+ε̄µ)(z)K
(i)

(
a + ε̄µ

a

a

∣∣∣∣ z
)
φ(a+ε̄µ,a)(z)

=
∑
b

(4.5)

From (4.5) and (4.4) we also have another expression:

T
(i)
B (z) =

n−1∑
µ=0

Ga+ε̄µφ
∗(a,a+ε̄µ)(z)K(i)

(
a + ε̄µ

a

a

∣∣∣∣ z
)
φ(a+ε̄µ,a)(z). (4.6)

4.2. Derivation of difference equations

In sections 2 and 3 we fix the normalization of W and K such that the maximal eigenvalues
of the boundary transfer matrix T (i)

B (z) are equal to unity in the thermodynamic limit. Thus
the boundary vacuum state |k −ωi, k〉B in Hk−ωi,k and its dual B〈k −ωi, k| in H∗k−ωi,k should
satisfy

K(i)

(
a + ε̄µ

a

a

∣∣∣∣ z
)
φ(a+ε̄µ,a)(z)|k − ωi, k〉B = φ(a+ε̄µ,a)(−z)|k − ωi, k〉B

B〈k − ωi, k|φ∗(a+ε̄µ,a)(z)K
(i)

(
a + ε̄µ

a

a

∣∣∣∣ z
)
= B〈k − ωi, k|φ∗(a+ε̄µ,a)(−z).

(4.7)
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Define the (N + 1)-point correlation function as

F (i)(z1, z2, . . . , zN)
a0,a1,a2,...,aN−1,aN

= B〈k − ωi, k|φ(a0,a1)(z1)φ
(a1,a2)(z2) · · ·φ(aN−1,aN )(zN)|k − ωi, k〉B (4.8)

where we assume that N ≡ 0 mod n for simplicity. It follows from (4.2), (4.7) and (4.4) that
correlation functions should satisfy
(1) R-matrix symmery:

F (i)(. . . , zj+1, zj , . . .)
...,aj−1,aj ,aj+1...

=
∑
a′j

W

(
aj+1 aj
a′j aj−1

∣∣∣∣ z1 − z2

)
F (i)(. . . , zj , zj+1, . . .)

...,aj−1,a
′
j ,aj+1... (4.9)

(2) reflection properties:

F (i)(. . . ,−zN)...,aN−1,aN = K(i)

(
aN−1

aN
aN

∣∣∣∣ z
)
F (i)(. . . , zN)

...,aN−1,aN (4.10)

F (i)
(
−z1 − n

2
, . . . ,

)a0,a1,... = K̂(i)

(
a1
a0

a0

∣∣∣∣ z
)
F (i)(z1, . . .)

a0,a1,.... (4.11)

These relations can be shown by the same discussion as in [11, 12].
Let

F (i)(z1, z2, . . . , zN) =
∑

a0,a1,...,aN

v(a0,a1) ⊗ v(a1,a2) ⊗ · · · ⊗ v(aN−1,aN )

×F (i)(z1, z2, . . . , zN)
a0,a1,a2,...,aN−1,aN .

Then we conclude from (4.9)–(4.11) that the /z1 ⊗ · · · ⊗ /zN -valued correlation function
F (i)(z1, . . . , zN) should satisfy the following difference equations:

TjF
(i)
N (z1, . . . , zN) = W

/zj−n,/zj−1

jj−1 · · ·W/zj−n,/z1

j1 K̂j (−zj )
×W/z1 ,/−zj

1j · · ·W/zj−1 ,/−zj
j−1j W

/zj+1 ,/−zj
j+1j · · ·W/zN

,/−zj
Nj

×Kj(zj )W
/zj

,/zN

jN · · ·W/zj
,/zj+1

jj+1 F
(i)
N (z1, . . . , zN) (4.12)

where

Tjf (z1, . . . , zj , . . . , zN) = f (z1, . . . , zj − n, . . . , zN).

4.3. Simple difference equations

In this subsection we consider the correlation functions of the form

P
(a+ε̄µ,a)
i (z1, z2) = B〈k − ωi, k|φ(a,a+ε̄µ)(−z1)φ

(a+ε̄µ,a)(z2)|k − ωi, k〉B
= Ga+ε̄µ × B〈k − ωi, k|φ∗(a,a+ε̄µ)(−z1)φ

(a+ε̄µ,a)(z2)|k − ωi, k〉B. (4.13)

You can show in a similar way to (4.12) that these correlation functions satisfy the following
difference equations:

T1P
(a+ε̄λ,a)
i (z1, z2) =

∑
µν

Ga+ε̄λGa−ε̄µ
G2
a

K(i)

(
a + ε̄λ

a

a

∣∣∣∣ z1 − n
)

×W
(
a + ε̄λ a

a a − ε̄µ

∣∣∣∣− z1 − z2

)
K∗(i)

(
a − ε̄µ a

a

∣∣∣∣ z1 − n

2

)

×W
(
a + ε̄ν a

a a − ε̄µ

∣∣∣∣ z2 − z1

)
P
(a+ε̄ν ,a)
i (z1, z2) (4.14)
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T2P
(a+ε̄λ,a)
i (z1, z2) =

∑
µν

Ga+ε̄λGa−ε̄µ
G2
a

W

(
a + ε̄λ a

a a − ε̄µ

∣∣∣∣ z1 − z2

)

×K∗(i)
(
a − ε̄µ a

a

∣∣∣∣ z2 − n

2

)
W

(
a + ε̄ν a

a a − ε̄µ

∣∣∣∣− z1 − z2

)

×K∗(i)
(
a + ε̄ν

a

a

∣∣∣∣ z1 − n
)
P
(a+ε̄ν ,a)
i (z1, z2). (4.15)

Set

P
(a)
i (z1, z2) =

n−1∑
λ=0

P
(a+ε̄λ,a)
i (z1, z2).

Then we restrict ourselves to the limiting case such that a K-matrix is a certain scalar, as done
in [11,12]. Then the difference equations forP (a)

i (z1, z2) can be derived from (4.14) and (4.15)
as follows:

T1P
(a)
i (z1, z2)

P
(a)
i (z1, z2)

= (x−2nζ 2
1 )

(n−1)/r r1(2z1 − n)r1(−z+)
[−z+ + n]

[−z+ + 1]
r1(−z−) [−z− + n]

[−z− + 1]

T2P
(a)
i (z1, z2)

P
(a)
i (z1, z2)

= (x−2nζ 2
2 )

(n−1)/r r1(2z2 − n)r1(−z+)
[−z+ + n]

[−z+ + 1]
r1(z−)

[z− + n]

[z− + 1]
.

(4.16)

Here we use the notation z± = z1 ± z2, and also use the following sum formulae:

n−1∑
λ=0

Ga+ε̄λ

Ga

W

(
a + ε̄λ a

a a − ε̄µ

∣∣∣∣ z
)
= r1(z)

[z + n]

[z + 1]
n−1∑
µ=0

Ga−ε̄µ
Ga

W

(
a + ε̄ν a

a a − ε̄µ

∣∣∣∣ z
)
= r1(z)

[z + n]

[z + 1]
.

(4.17)

The solution to (4.16) is given as follows:

P
(a)
i (z1, z2) = C(a)

i A(z1)A(z2)B(z+)B(z−) (4.18)

where C(a)
i is a constant, and

A(z) = a(ζ 2)a(ζ−2) a(ζ ) = (x4n+2r−2ζ ; x2n, x4n, x2r )∞(x2n+2ζ ; x2n, x4n, x2r )∞
(x2n+2r ζ ; x2n, x4n, x2r )∞(x4nζ ; x2n, x4n, x2r )∞

B(z) = b(ζ )b(ζ−1) b(ζ ) = (x2r ζ ; x2n, x2n, x2r )∞(x4nζ ; x2n, x2n, x2r )∞
(x2n+2r−2ζ ; x2n, x2n, x2r )∞(x2n+2ζ ; x2n, x2n, x2r )∞

.

Before finishing this section let us prove the sum formulae (4.17), both of which are
equivalent to

n−1∏
ν=0
ν �=µ

[aµν + 1]

[aµν]
+
n−1∑
λ=0
λ�=µ

[z + aλµ + 1][1]

[z + 1][aλµ]

n−1∏
ν=0
ν �=λ,µ

[aλν + 1]

[aλν]
= [z + n]

[z + 1]
. (4.19)

Note that the LHS of (4.19) is not singular at āi = āj (0 � i < j � n− 1), and also that the
LHS vanishes at z = −n. Hence the LHS is equal to the RHS up to a constant C. In order to
show that C = 1, it is sufficient to set z = 0 and formally set

aµν =
{
n + ν − µ (ν = 0, 1, . . . , µ− 1)

ν − µ (ν = µ + 1, . . . , n− 1).

Thus the sum formulae (4.17) are proved.
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5. Concluding remarks

Let us briefly summarize the results of this paper. In section 2 we discussed the ground state
configurations for the boundaryA(1)

n−1-face model. Here we restricted the spectral parameter z to
satisfy one of n conditions (2.16) and (2.17). Accordingly, one of n ground state configurations
is specified. At this stage theK-matrix was determined up to a scalar factor f (i)a (z) (see (2.21)).
We determined the factor f (i)a (z) by imposing the boundary crossing symmetry (3.20). For
that purpose the fusion procedure of K operators was established in section 3. Using the type
I vertex operators [2,22] we constructed the/z1 ⊗· · ·⊗/zN -valued correlation functions that
should satisfy the difference equation (4.12). We solved the simplest difference equations to
obtain the one-point local state probability (4.18).

There are two ways of proceeding further. One is solving the difference equations (4.12) to
obtain the corresponding local state probabilities, while the other is constructing the boundary
vacuum states in terms of bosonized vertex operators to do the same thing. Let us discuss the
latter way here.

Consider the bosons B
j
m (1 � j � n − 1,m ∈ Z\{0}) with the commutation

relations [26, 27]

[Bj
m, B

k
m′ ] =



m

[(n− 1)m]x
[nm]x

[(r − 1)m]x
[rm]x

δm+m′,0 (j = k)

−mxsgn(j−k)nm [m]x
[nm]x

[(r − 1)m]x
[rm]x

δm+m′,0 (j �= k)

where the symbol [a]x stands for (xa − x−a)/(x − x−1). Define Bn
m by

n∑
j=1

x−2jmBj
m = 0.

Using these oscillators Bj
m the bosonization of the type I vertex operators for the A(1)

n−1-face
model was given in [22] on the Fock space Fl,k . Furthermore, we make the ansatz [15, 19]
such that the boundary vacuum states and their dual have the form

|k − ωi, k〉B = exp(F (i)
a )|k − ωi, k〉 B〈k − ωi, k| = B〈k − ωi, k| exp(G(i)

a )

where |l, k〉 is the highest weight of Fl,k , and

F (i)
a = − 1

2

∑
m>0

n−1∑
s,t=1

αstmB
s
−mB

t
−m +

∑
m>0

n−1∑
t=1

βt,(i)m,a B
t
−m

G(i)
a = − 1

2

∑
m>0

n−1∑
s,t=1

γ stm B
s
−mB

t
−m +

∑
m>0

n−1∑
t=1

δt,(i)m,a B
t
−m.

Since Hl,k and Fl,k have different characters, the bosonized expressions of correlation functions
cannot be identified with the one defined in (4.8). In order to obtain the correct bosonized
formulae for correlation functions, we have to construct the BRST cohomology of the
appropriate complex which realizes the space of physical states Hl,k as subquotients of Fl,k .
We will address this problem in a separate paper.
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Appendix A. Fused A(1)
n−1 Boltzmann weights

Let us introduce the fusion of Boltzmann weights W [22].
Let ? = {λ1, . . . , λm} be a subset of N = {0, 1, . . . , n − 1} such that λ1 < · · · < λm.

For κ, µ ∈ N set µ = κ if κ ∈ ?, otherwise set µ ∈ ? ∪ {κ}. For given κ, µ,? let
0 � ν1 < · · · < νm � n− 1 be such that ε̄µ + ε̄ν1 + · · · + ε̄νm = ε̄κ + ε̄λ1 + · · · + ε̄λm .

The fusion of W in the horizontal direction is constructed as follows. Let a, b, d =
d0, d1, . . . , dm−1, dm = c ∈ P satisfy

c = b + ε̄µ dj − dj−1 = ε̄λj (1 � j � m) d = a + ε̄κ .

Note that b = a + ε̄ν1 + · · · + ε̄νm from the definition of νj . Let σ ∈ Sm be a permutation of
(1, . . . , m), and set

aσ0 = a aσj = bσj−1 + ε̄νσ(j) (1 � j � m) aσm = b.
Then m-fold antisymmetric fusion of W in the horizontal direction is given as

W(1,m)

(
c d

b a

∣∣∣∣ z
)
=
∑
σ∈Sm

sgn σ
m∏
j=1

W

(
dj dj−1

aσj aσj−1

∣∣∣∣ z +
m + 1

2
− j

)
. (A.1)

Note that W(1,m) is antisymmetric with respect to (λ1, . . . , λm).
Next, consider the fusion in the vertical direction. We use the same κ, µ, λj and νj as

before. Now we set

b = a + ε̄µ aj − aj−1 = ε̄λj (1 � j � m) c = d + ε̄κ

where a0 = a, am = d . We have c = b + ε̄ν1 + · · · + ε̄νm . For σ ∈ Sm set

bσ0 = b bσj = bσj−1 + ε̄νσ(j) (1 � j � m) bσm = c.
Then m-fold antisymmetric fusion of W in the vertical direction is given as

W(m,1)

(
c d

b a

∣∣∣∣ v
)
=
∑
σ∈Sm

sgn σ
m∏
j=1

W

(
bσj aj
bσj−1 aj−1

∣∣∣∣ z− m + 1

2
+ j

)
. (A.2)

Note that W(m,1) is antisymmetric with respect to (λ1, . . . , λm).
We further introduce the fusion of W in both the horizontal and vertical directions. Let

0 � κ1 < · · · < κm � n− 1, 0 � µ1 < · · · < µm � n− 1, 0 � λ1 < · · · < λm′ � n− 1 and
0 � ν1 < · · · < νm′ � n− 1 satisfy

m∑
j=1

ε̄κj +
m′∑
j=1

ε̄λj =
m∑
j=1

ε̄µj +
m′∑
j=1

ε̄νj .

Let a, b, c, d ∈ P satisfy

d = a +
m∑
j=1

ε̄κj c = d +
m′∑
j=1

ε̄λj b = a +
m′∑
j=1

ε̄νj c = b +
m∑
j=1

ε̄µj .

Then the m × m′-fold fusion of W is defined as the antisymmetrized product of the m′-fold
fusion of W in the horizontal direction:

W(m,m′)
(
c d

b a

∣∣∣∣ v
)
=
∑
σ∈Sm

sgn σ
m∏
j=1

W
(1,m′)
II

(
bσj aj
bσj−1 aj−1

∣∣∣∣ z− m + 1

2
+ j

)
(A.3)

where

a0 = a aj = aj−1 + ε̄κj (1 � j � m) am = d
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and

bσ0 = b bσj = bσj−1 + ε̄µσ(j) (1 � j � m) bσm = c.
The W(m,m′) can also be defiend as the antisymmetrized product of the m-fold fusion of W in
the vertical direction:

W(m,m′)
(
c d

b a

∣∣∣∣ z
)
=

∑
σ∈Sm′

sgn σ
m′∏
j=1

W(m,1)

(
dj dj−1

aσj aσj−1

∣∣∣∣ z +
m′ + 1

2
− j

)
(A.4)

where

d0 = d dj = dj−1 + ε̄λj (1 � j � m) dm′ = c
and

aσ0 = a aσj = aσj−1 + ε̄νσ(j) (1 � j � m′) aσm′ = b.
The explicit expressions of fused Boltzmann weights in both the horizontal and vertical

directions are given as follows [22]:

W(1,m)

(
a + ε̄λ + ε̄? a + ε̄λ
a + ε̄? a

∣∣∣∣ z
)
= (−1)m−1rm(z)

[z + m−1
2 ]

[z + m+1
2 ]

m∏
j=1

[aλλj − 1]

[aλλj ]

W(1,m)

(
a + ε̄λ + ε̄? a + ε̄λ1

a + ε̄? a

∣∣∣∣ z
)
= (−1)m−1rm(z)

[z + m−1
2 + aλλ1 ][1]

[z + m+1
2 ][aλλ1 ]

m∏
j=2

[aλλj − 1]

[aλλj ]

W(1,m)

(
a + ε̄λ1 + ε̄? a + ε̄λ1

a + ε̄? a

∣∣∣∣ z
)
= (−1)m−1rm(z)

m∏
j=2

[aλ1λj ]

[aλ1λj + 1]

W(m,1)

(
a + ε̄λ + ε̄? a + ε̄?
a + ε̄λ a

∣∣∣∣ z
)
= (−1)m−1rm(z)

[z + m−1
2 ]

[z + m+1
2 ]

m∏
j=1

[aλjλ − 1]

[aλjλ]
(A.5)

W(m,1)

(
a + ε̄λ + ε̄? a + ε̄?
a + ε̄λm a

∣∣∣∣ z
)
= (−1)m−1rm(z)

[z + m−1
2 + aλλm ][1]

[z + m+1
2 ][aλλm ]

m−1∏
j=1

[aλjλm − 1]

[aλjλm ]

W(m,1)

(
a + ε̄λm + ε̄? a + ε̄?
a + ε̄λm a

∣∣∣∣ z
)
= (−1)m−1rm(z)

m−1∏
j=1

[aλjλm − 1]

[aλjλm ]
.

Here we denote ε̄λ1 + · · · + ε̄λm by ε̄? for simplicity.
When m = n − 1 we identify W/,/∗ (resp. W/∗,/) with W(1,n−1) (resp. W(n−1,1)) as

follows:

W
/z1 ,/

∗
z2

(
c d

b a

)
= (−1)n−1+λ+νW(1,n−1)

(
c d

b a

∣∣∣∣ z1 − z2

)
(A.6)

where b − a = −ε̄ν , c − d = −ε̄λ, and (b, c), (a, d) are admissible, and

W
/∗z1 ,/z2

(
c d

b a

)
= (−1)n−1+µ+κW(n−1,1)

(
c d

b a

∣∣∣∣ z1 − z2

)
(A.7)

where d − a = −ε̄κ , c − b = −ε̄µ, and (a, b), (d, c) are admissible.
The crossing symmetries are as follows:

W
/z1 ,/

∗
z2

(
c d

b a

)
= Gb

Gc

W

(
d a

c b

∣∣∣∣ z2 − z1 − n

2

)
(A.8)

and

W
/∗z1 ,/z2

(
c d

b a

)
= Gb

Ga

W

(
b c

a d

∣∣∣∣ z2 − z1 − n

2

)
. (A.9)
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Appendix B. Proof of the reflection equation

The aim of this appendix is to give a simple sketch of the proof of the claim that (2.14) solves
the reflection equation (2.13). Since theK-matrix is diagonal in the sense thatK(a, b, c|z) = 0
unless b = c, it is sufficient to consider the case a = e = g in (2.13). In this case the reflection
equation reduces to∑
d

K

(
d
a

a

∣∣∣∣ z1

)
K

(
f
a

a

∣∣∣∣ z2

)
W

(
c f

d a

∣∣∣∣ z1 + z2

)
W

(
c d

b a

∣∣∣∣ z1 − z2

)

=
∑
d

K

(
d
a

a

∣∣∣∣ z1

)
K

(
b
a

a

∣∣∣∣ z2

)
W

(
c f

d a

∣∣∣∣ z1 − z2

)
W

(
c d

b a

∣∣∣∣ z1 + z2

)
.

(B.1)

Note that (B.1) holds as 0 = 0 unless the quartet (a, b, c, f ) is admissible. Assume that
(a, b, c, f ) is admissible. Then there are the following three cases:

(i) b = f = a + ε̄µ, c = a + 2ε̄µ;
(ii) b = f = a + ε̄µ, c = a + ε̄µ + ε̄ν (µ �= ν);

(iii) b = a + ε̄µ, f = a + ε̄ν , c = a + ε̄µ + ε̄ν (µ �= ν).

For case (i) equation (B.1) is trivial because the only non-zero terms of both sides result from
d = a + ε̄µ. It is also easy to prove case (ii). Up to now we did not use the explicit form of the
K-matrix (2.14) except for its diagonal property.

Let us prove case (iii). By substituting (2.8) and (2.14) into (B.1), the reflection
equation (2.13) is equivalent to

[āν + η + z2]

[āν + η − z2]

(
[āµ + η + z1]

[āµ + η − z1]
[z1 + z2][aµν − z1 + z2]

+
[āν + η + z1]

[āν + η − z1]
[z1 − z2][aµν + z1 + z2]

)

= [āµ + η + z2]

[āµ + η − z2]

(
[āµ + η + z1]

[āµ + η − z1]
[z1 − z2][aµν − z1 − z2]

+
[āν + η + z1]

[āν + η − z1]
[z1 + z2][aµν + z1 − z2]

)
.

Let F stand for the difference of both sides as the function of z1. It is easy to show that the
poles at z1 = āµ + η and z2 = āν + η are spurious. Thus the function F is an entire function
of z1 with the quasi double periodicities. Suppose that F is not identically zero. Then the
transformation properties of F contradict the positions of the zeros at z1 = ±z2. We therefore
obtain F = 0 and conclude that (2.14) solves the reflection equation (2.13).
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